jueves, 13 de agosto de 2015

nivelacion de informatica

       LA ELECTRICIDAD
 La electricidades el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática, la inducción electromagnética o el flujo de corriente eléctrica. La electricidad es una forma de energía tan versátil que tiene un sinnúmero de aplicaciones, por ejemplo: transporte, climatización, iluminación y computación.2 La electricidad se manifiesta mediante varios fenómenos y propiedades físicas: Carga eléctrica: una propiedad de algunas partículas subatómicas, que determina su interacción electromagnética. La materia eléctricamente cargada produce y es influida por los campos electromagnéticos. Corriente eléctrica: un flujo o desplazamiento de partículas cargadas eléctricamente por un material conductor; se mide en amperios. Campo eléctrico: un tipo de campo electromagnético producido por una carga eléctrica incluso cuando no se está moviendo. El campo eléctrico produce una fuerza en toda otra carga, menor cuanto mayor sea la distancia que separa las dos cargas. Además las cargas en movimiento producen campos magnéticos. Potencial eléctrico: es la capacidad que tiene un campo eléctrico de realizar trabajo; se mide en voltios. Magnetismo: La corriente eléctrica produce campos magnéticos, y los campos magnéticos variables en el tiempo generan corriente eléctrica. La electricidad se usa para generar: luz mediante lámparas calor, aprovechando el efecto Joule movimiento, mediante motores que transforman la energía eléctrica en energía mecánica señales mediante sistemas electrónicos, compuestos de circuitos eléctricos que incluyen componentes activos (tubos de vacío, transistores, diodos y circuitos integrados) y componentes pasivos como resistores, inductores y


                                                       LA ELECTRONICA
 La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo de los electrones u otras partículas cargadas eléctricamente. Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la gran construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.



                                                            LEY DE OHM
La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica, estrechamente vinculada a los valores de las unidades básicas presentes en cualquier circuito eléctrico como son:

  1. Tensión o voltaje "E", en volt (V).
  2. Intensidad de la corriente "  I ", en ampere (A).
  3. Resistencia "R" en ohm () de la carga o consumidor conectado al circuito.

Circuito eléctrico cerrado compuesto por una pila de 1,5 volt, una resistencia o carga eléctrica "R" y la.circulación de una intensidad  o flujo de corriente eléctrica " I " suministrado por la propia pila.


Debido a la existencia de materiales que dificultan más que otros el paso de la corriente eléctrica a través de los mismos, cuando el valor de su resistencia varía, el valor de la intensidad de corriente en ampere también varía de forma inversamente proporcional. Es decir, a medida que la resistencia aumenta la corriente disminuye y, viceversa, cuando la resistencia al paso de la corriente disminuye la corriente aumenta, siempre que para ambos casos el valor de la tensión o voltaje se mantenga constante.

Por otro lado y de acuerdo con la propia Ley, el valor de la tensión o voltaje es directamente proporcional a la intensidad de la corriente; por tanto, si el voltaje aumenta o disminuye, el amperaje de la corriente que circula por el circuito aumentará o disminuirá en la misma proporción, siempre y cuando el valor de la resistencia conectada al circuito se mantenga constante.

                                             LEY DE WATT

La ley de Watt dice que la potencia eléctrica es directamente proporcional al voltage de un circuito y a la intensidad que circula por él.
Voltage en voltios (v)
Intensidad (i)
Potencia en Vatios (P)
Ecuación de Watt:
P = V . I
Los valores puedes ser cambiados en caso de tener Intensidad y Potencia para calcular el voltage, tal cual lo indica en la imágen.                                          ley de watt

                                       QUE SON LOS MECANISMOS
Los mecanismos son elementos destinados a transmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) a un elemento conducido. Permiten al ser humano realizar determinados trabajos con mayor comodidad y con menos esfuerzo. En base a esta definición podemos clasificar los mecanismos en dos grandes grupos:En el primer caso, el tipo de movimiento que tenga el elemento de entrada del mecanismo  (elemento motriz) coincide con el tipo de movimiento que tenga el elemento de salida (elemento conducido).
En el segundo caso, el tipo de movimiento que tenga el elemento de entrada del mecanismo es diferente del tipo de movimiento que tenga el elemento de salida, es decir, el tipo de movimiento se transforma en otro distinto, de ahí el nombre.
Pero… ¿De qué tipos de movimiento estamos hablando? Podemos distinguir claramente tres tipos de movimiento diferentes:
  1. Movimiento circular o rotatorio, como el que tiene una rueda.
  2. Movimiento lineal o rectilíneo.
  3. Movimiento alternativo o de vaivén. En este caso, el elemento tiene un movimiento de ida y vuelta, que se repite cíclicamente como, por ejemplo, el de un péndulo.
Ya hemos clasificado los mecanismos en dos grandes grupos y qué movimientos puede tener pero… veamos una clasificación aún más exhaustiva:
Los mecanismos de transmisión pueden ser, a su vez, agrupados en dos grandes grupos:
  1. Mecanismos de transmisión circular: En este caso, el elemento de entrada y el elemento de salida tienen movimiento circular. Ejemplo: Los sistemas de engranajes.
  2. Mecanismos de transmisión lineal: En este caso, el elemento de entrada y el elemento de salida tienen movimiento lineal. Ejemplo: La palanca.
Los mecanismos de transformación puede ser, a su vez, agrupados en dos grandes grupos:
  1. Mecanismos de transformación circular-lineal: En este caso, el elemento de entrada tiene movimiento circular, mientras que el elemento de salida tiene movimiento lineal. Ejemplo: El mecanismo piñón-cremallera.
  2. Mecanismos de transformación circular-alternativo: En este caso, el elemento de salida tiene movimiento circular, mientras que el elemento de salida tiene movimiento alternativo. Ejemplo: El mecanismo de biela-manivela.
Es de señalar, que algunos de los mecanismos de transformación son reversibles. Así, por ejemplo, el mecanismo biela-manivela se puede considerar, también, un mecanismo de transformación alternativo-circular (al contrario de lo señalado anteriormente), pues el elemento de entrada puede ser el que tiene movimiento alternativo, mientras que elemento circular lo tiene el elemento conducido. Ya veremos los casos.
Resultado de imagen para que son  mecanismos  Resultado de imagen para que son  mecanismos

                                                                            MAQUINAS SIMPLES Y COMPUESTAS
Cuando la máquina es sencilla y realiza su trabajo enun solo paso, nos encontramos ante una máquina simple. Muchas de estas máquinas son conocidas desde la prehistoria o la antigüedad y han ido evolucionando incansablemente (en cuanto a forma y materiales) hasta nuestros días.
Algunas inventos que cumplen las condiciones anteriores son: cuchillo, pinzas, rampa, cuña, polea simple, rodillo, rueda, manivela, torno, hacha, pata de cabra, balancín, tijeras, alicates, llave fija...
Las máquinas simples se pueden clasificar en tres grandes grupos que se corresponden con el principal operador del que derivan: palanca, plano inclinado y rueda.

Palanca

Cascanueces. Ejemplo de uso de la palanca

La palanca es un operador compuesto de una barrarígida que oscila sobre un eje (fulcro). Según los puntos en los que se aplique la potencia (fuerza que provoca el movimiento) y las posiciones relativas deeje barra, se pueden conseguir tres tipos diferentes de palancas a los que se denomina: de primero, segundo y tercer género (o grado).
El esqueleto humano está formado por un conjunto de palancas cuyo punto de apoyo (fulcro) se encuentra en las articulaciones y la potencia en el punto de unión de los tendones con los huesos; es por tanto un operador presente en la naturaleza.
De este operador derivan multitud de máquinas muy empleadas por el ser humano: cascanueces, alicates, tijeras, pata de cabra, carretilla, remo, pinzas...

Plano inclinado

El plano inclinado es un operador formado por una superficie plana que forma un ángulo oblicuo con la horizontal.
Las rampas que forman montañas y colinas son planos inclinados, también pueden considerarse derivados de ellas los dientes y las rocas afiladas, por tanto este operador también se encuentra presente en la naturaleza.
De este operador derivan máquinas de gran utilidad práctica como: broca, cuña, hacha, sierra, cuchillo, rampa, escalera, tornillo-tuerca, tirafondos...

Broca. Ejemplo de uso del plano inclinado

Rueda

Polea. Ejemplo de uso de la rueda

La rueda es un operador formado por un cuerpo redondo que gira respecto de un punto fijo denominado eje de giro.
Normalmente la rueda siempre tiene que ir acompañada de uneje cilíndrico (que guía su movimiento giratorio) y de unsoporte (que mantiene al eje en su posición).
Aunque en la naturaleza también existen cuerpos redondeados (troncos de árbol, cantos rodados, huevos...), ninguno de ellos cumple la función de la rueda en las máquinas, por tanto se puede considerar que esta es una máquina totalmente artificial.
De la rueda se derivan multitud de máquinas de las que cabe destacar: polea simple, rodillo, tren de rodadura, noria, polea móvil, polipasto, rodamiento, engranajes, sistema correa-polea...

Máquinas compuestas


Introducción


Cuando no es posible resolver un problema técnico en una sola etapa hay que recurrir al empleo de una máquina compuesta, que no es otra cosa que una sabia combinación de diversas máquinas simples, de forma que la salida de cada una de ellas se aplica directamente a la entrada de la siguiente hasta conseguir cubrir todas las fases necesarias.
Las máquinas simples, por su parte, se agrupan dando lugar a los mecanismos, cada uno encargado de hacer un trabajo determinado. Si analizamos un taladro de sobremesa podremos ver que es una máquina compuesta formada por varios mecanismos: uno se encarga de crear un movimiento giratorio, otro de llevar ese movimiento del eje del motor al del taladro, otro de mover el eje del taladro en dirección longitudinal, otro de sujetar la broca, otro...
Mecanismos del taladro de sobremesa
La práctica totalidad de las máquinas empleadas en la actualidad son compuestas, y ejemplos de ellas pueden ser: polipasto, motor de explosión interna (diesel o gasolina), impresora de ordenador, bicicleta, cerradura, lavadora, video...

Maquinas compuestas

maquinas-compuestas
La manera más apropiada de comenzar este artículo será sin duda, en la medida que existe mucha gente que lo ignora, tratar de explicar sencilla y apropiadamente qué es, en realidad, una maquina compuesta. Pues bien: Dicha expresión ha de aplicarse a todo sistema de mecanismos en el que las distintas variables son, siempre, maquinas simples. Profundicemos un poco esta muy técnica definición.

Para poder entender lo que es una maquina compuesta debemos primero, antes que nada, saber a la perfección de qué hablamos cuando nos referimos a maquinas simples. Solo una vez que hayamos sido capaces de comprender cabalmente el funcionamiento de aquellas, seremos libres, entonces, de dar el siguiente paso; tratar de hacernos una idea bien clara de qué es lo que la palabra “sistema” en realidad, al fin y al cabo, quiere decir.
La palabra sistema está, hoy en día, en la boca de todo el mundo. Sin embargo, si uno se anima a preguntar por ahí, suele descubrir que son muy pocas las personas que efectivamente saber definir la palabra sistema. No todo lo que la gente suele llamar sistema es, en realidad, tal cosa. Despejemos entonces las dudas; es cosa bastante sencilla: Un sistema no es más que una interrelación de variables. O sea: consideramos variable a cualquier cosa que se pueda experimentar y medir y, luego, consideramos sistema a una interacción dada de variables.
La característica fundacional de todo sistema ha de ser, entonces, el hecho de que la alteración de alguna de sus variables implicará, entonces, sí o sí, la aliteración de, por lo menos, otra.

Vemos un ejemplo sencillo; un juego de ajedrez (es indistinto si el lector sabe o no jugar)Cuando se mueve una pieza, sea la que sea, ese movimiento produce una transformación en el sistema todo; todas las demás piezas pasan, inmediatamente, a verse alcanzadas por el cambio que implica la pieza movida. Así, el ajedrez es, de todos los divertimentos, el más sistémico de todos.


                                            FINNN . .